Trinamic's TMC5160-BOB setup

Driving Stepper Motors with the new TMC5160 by using TRINAMIC’s API on a Raspberry Pi

This start-up guide explains how to connect your Raspberry Pi 3 to the TMC5160-BOB – the breakout board of the brand new TMC5160. We’ll be using the internal Motion Controller and +3V3 logic supply for the TMC5160. The wiring will be limited to the basic functionality to communicate via SPI. The usage of the TRINAMIC’s API – TMC-API – is minimizing the software effort.

Preparation

In this tutorial we are using a fresh Raspbian Stretch System (Version November 2017 – Release date 2017-11-29) with the latest updates:

Download and install the bcm2835 library. Note XXX is a placeholder for the latest version. For this guide version “1.52” was used. In this case, XXX is replaced by “1.52”. You can check the latest version by scrolling to the bottom of the following page: http://www.airspayce.com/mikem/bcm2835/

Create a project folder and download the latest TMC-API. Note X.XX is a placeholder for the latest version. For this guide version “3.02” was used. In this case, X.XX is replaced by “3.02”. You can check the latest version by scrolling to the bottom of the following page: https://www.trinamic.com/support/software/access-package/

Wiring

The wiring is very simple. You will need 8 jumper wires. As a reference you can use the TMC5160-BOB_datasheet_Rev1.0.pdf. You will find the signals that are on each pin.

Signal Raspberry Pi 3 TMC5160-BOB
VCC_IO GPIO02 (3) VCC_IO (1)
GND GND (39) GND (2)
SPI Chip select (CS) SPI0 SCLK (23) CSN (3)
SPI CLK SPI0 SCLK (23) SCK (4)
MOSI SPI0 MOSI (19) SDI (5)
MISO SPI0 MISO (21) SDO (6)
TMC5160 CLK GPIO04 (7) CLK (8)
TMC5160 DRV_ENN GPIO03 (5) DRV_ENN (9)
TMC5160-BOB

 

Raspberry Pi 3 GPIO Header – Source: https://www.element14.com/community/docs/DOC-73950/l/raspberry-pi-3-model-b-gpio-40-pin-block-pinout

Raspberry Pi Code

An example code to initialize the TMC5160 is shown below. These files need to be placed in the same project folder as the TMC-API, in this case into ~/TMC_EXAMPLE. First, +3.3V is supplied to VCC_IO, the driver stages are enabled by pulling down DRV_ENN and the internal clock is used by pulling down CLK16. Afterwards, the TMC5160 is initialized and a simple move to position cycle is executed. The sequence will rotate a 200 full stepper motor 10 revolutions clockwise and 10 revolutions counterclockwise – depending on the wiring of the stepper motor. Please refer to the TMC5160 datasheet or the TMCL-IDE as a reference for the different registers.

You can also download the source files directly with your Pi:

 

 

 

 

Compiling and running the code

Use the following command to compile the code.

Now you are able to execute this example.

Be aware that the motor runs as soon as you execute the program.

Related Pages

TMCL-IDE

TMC5160

TMC5160-BOB

TRINAMIC Technology Access Package -TMC-API

www.trinamic.com

Leave a Reply

Your email address will not be published. Required fields are marked *